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ABSTRACT

At present the theoretical estimates of critical exponents values are obtained
with high accuracy for systems with different dimensionality of space d and with
different number of components N of the order parameter. For N=1 these values

are approximated by equations

v =In2 /Ind, n=[(4-d)/Q2+d)]? (1

where v and n are the critical exponents of correlation radius and correlation
function. Attemps to use the values of critical exponents of three - dimensional
model systems for the description of liquid - gas system experimental data lead to
a very narrow region of action of asymptotic equations and to some distortion of
common regularities of the thermodynamic properties behavior. New experimental
data analysis in accordance with authors’ method leads to necessity to use the so
called “compromise” (experimental) critical exponents. These exponents extend
region of action of asymptotic equations and are in good accordance with
common regularities of the thermodinamic properties behavior. The elimination of
discrepancy between theoretical and experimental values of critical exponents is
possible when noninteger dimensionality of space d = 3.1 is used in equations (1).
There are two reasons to explain the above mentioned:

1) Critical exponents depend on additional to d and N third parameter X
which is the feature of the liquid - gas system; _

2) Critical exponents depend only on d and N. Physical space has noninteger
dimensionality which is the feature of the fractal geometric objects.

KEY WORDS: critical exponent, critical parameters, dimensity of space, fractal

object, individual substances, order parameter number, thermodynamic properties.



1. INTRODUCTION.

Thermodynamic values behavior of different physical systems near its critical

points is determined by simple power laws of the kind
ay=E |ax|® | (1)

where Ay = (Y-¥c) / Ve, AX = (%-X) / X, “c” is the sign of critical state, € -

critical exponent, E - cirtical amplitude. Existing theoretical estimates of critical
exponents values one can describe by different analytical dependences on space
dimensity d of physical system [1, 2].

At first the question “In what way does it become manifest in the fundamental
laws of physics that space has three dimensions?” was formulated by P. Ehrenfest
in 1917 [3,.4]. He had investigated sencibility of planet system, Bohr's spectrum of
hydrogenium atom and wave process to the value of space dimensity d = 2,d = 3
and d > 4. On Ehrenfest’s view the space dimesionality penetrates all the physics
and thus becomes the physical concept.

Critical exponents are directly related by sensible dependence to space
dimensionality. Such relation gives new trend for critical phenomena investigations
and space dimensionality becomes the physical value which one can determine
from accurate experimental data on thermodynamic properties of substances.

Our new analysis of experimental data on thermodynamic properties of water
[5-7] shows that critical exponents of liquid - gas system are nearer to the previous
“compromise” estimates [8, 9] than to the theoretical estimates for three -
dimensional systems d = 3 with one - component order parameter N = 1. At the
same time the substitution of noninteger space. dimensionality d = 3.1 into
theoretical formulas gives the experimental values of critical exponents for the
liquid - gas system. There are two reasons to explain the above menﬁoned:

1) Critical exponents depend on additional to d and N third parameter X
which is the feature of the liquid - gas system;

2) Critical exponents depend only on d and N. Physical space has noninteger
dimensionality which is the feature of the fractal geometric objects.

In this paper dependences of critical exponents on d and N are presented,

arguments are adduced for declination of experimental critical exponents from



theoretical one for d = 3 and N = 1, some features of fractal space are considered
and the possibilities of such mathematical model of space using for physical
phenomena description are discussed.

2. THE DEPENDENCE OF CRITICAL EXPONENTS ON THE
DIMENSIONALITY OF SPACE AND THE NUMBER OF THE ORDER
PARAMETER.

In [1] we proposed the formulas for critical exponents of correlation radius v

and correlation function

2 ([d-2)(@d-4)@2-N) 4-4
v=—++ ), n = (3)
d g B+ d2-4

which are consistent with the theoretical estimates of critical exponents obtained
by 1984 ford = 2, 3, 4 and N = 1, 2, 3. In [2] we proposed the formulas

In2 74-d \2
V= — @, 71=( ) (5)
Ind 2+d

which are consistent with the new theoretical estimates of critical exponents in the
regiond =1 -4 at N = 1. On Fig.1 and Fig.2 the dependences v(d) (4) and n(d)
(5) are compared with critical exponents estimates [10]. Other critical exponents

are connected with critical exponents v and n by scaling theory relations

v

a=2-dv (6), B=—(@-2+n) (7
2
d+2-nq

y=v@2-1n (8, = ——. ()]

d-2+r|



Substitliting equations (4) and (5) into relations (6) - (9), we express the
remaining critical exponents of systems with a one - component order parameter
in terms of the dimensionality of space:

a=2-dn2/nd |, (10)

[ ]

In 2 4-d 2

ﬁ=—[d—2+( )J , (11)
2Ind 2+d
mz[- 4-d 2]

YE— 2'( ) s (12)
Ind 2+d :

a=[d+2_(‘2‘;dd)2]/[d_2+(: :1)2} . (13)

By eliminating d from the equations for two exponents, one critical exponent

may be expressed in terms of another. For example, equations (4) and (5) may be

written in the form

d =2 (14), d=2@2-n2)/1+112), (15)

In 2
- . (16)
m2+In@2-n"2) - +n?

For the d = 3.0 - 3.3 range the critical exponents a, ¥y, 8, caiculated by

equations (10) - (13), may be represented as the following functions of the critical
exponent [3:

a =-0.01692 + 1.0679 § - 2.1016 2 (17)
y=2.017 - 3.0684p + 2.10232 (18)
5 = 15.0583 - 46.308 § + 45.55 g2 . (19)

Simple approximating formulas can also be constructed for the dependence of

critical exponents on the number of components of the order parameter. The
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existing theoretical estimates of critical exponents values for d = 2, 3 and N = 0,

1, 2, 3 may be reproduced by formula (5) for n and by the next formula for v

v=——7 +(N-1)
Ind

In2 ' 4-4d\2
( ) (20)

2+d

To describe the critical exponents of the spherical model corresponding to d =
3 and N = oo, formulas for nj (d, N) and v (d, N) must yield n = 0 and v =1 as
N — . We propose the following modification of formulas (4) and (5), which

ensures the correct transition to the values of critical exponents of the spherical

model:

4-d4\2 2N-1+a3 2N + 1 + @2
n=( ) (1), v=1n2/h1<d ) (22)
2+d N2 + @3 3N + g2

Fig.3 shows dependence 3 on § at fixed value N = 1 and at arbitrary values d
(curve 1). On this curve point 7 marks theoretical critical exponents corresponding
to d=3. Experimental estimates of the critical exponents values of the liquid-gas
system [8] (point 6), [7] (point 5) and [9] (point 4) correspond to space
dimensionality d = 3.06, 3.10, 3.15 respectively. Passing through point 7 lines 2
and 3 are calculated by the use of formulas (5), (20) and (21), (22) and relations
(7), (8) at fixed value d = 3 and at arbitrary values N. In this case the critical
exponent (3 is independed on the critical exponent §. Thus the declination of
theoretical values of critical exponents g = 0.328 £ 0.003 and & = 4.77 + 0.05 from
experimental estimates for liquid-gas system $ = 0.35 + 0.01 and 8 = 4.43 + 0.15
may be eliminated only by the change of space dimensionality from 3 to ~3.1

(transition from point 7 into point 5).



3. THE EXPERIMENTAL ESTIMATES OF CRITICAL EXPONENTS
VALUES FOR THE LIQUID-GAS SYSTEM.

The purely power dependence of the form of equation (1) is almost never
realized for the thermodynamic functions of real substances, and one usually
observes the more complex case

Ay = E|Ax|®[1 + f(Ax)] . (23)

That is why the experimental estimates £¢f away from the critical point will

differ from the true value of the critical exponent €
d In|Ay]| Ax df (Ax)/dAx

gf=——— =g+ . (24)
-d In|Ax] 1+ f (A%)

Therefore, in order to estimate the critical exponent reliably, one needs to
elimimate or at least weaken the distorting effect of correction terms to the
asymptotic dependence and of indeterminacy of the choice of values of the critical
parameters, that is, find a method to expand the range of validity of the purely
power dependence (1). One such method was used in [5] to determine the critical
exponent (3 from the experimental data on density of water on the boundary curve.
The variable Ax in equation (23) is transformed so that the dependence of the

quantity Ay being investigated on the new variable

AX* = Ax [1 + p(AX)] | 25)

would be purely power dependence
Ay =E |ax*|® . (26)

Another possible method of determining the critical exponent € is the direct
extrapolation of the relationship €°f (Ax), derived from experimental data, to
Ax =0.

Dependence of density on temperature on the boundary curve may be
presented in the form



Ao =2 A1+ A, A1 =(0 - 0") /20,802 =(Q" Q") /20.-1 (27)

where the indexes “’” and “”” denote the parameters of liquid and gas state.
Dependence of density on pressure on the critical isotherm may be pesented in the
form (27) as well by turmng the gas branch of the critical isotherm toward high
pressures. In this case the values of g’and p”are taken for the same values

laP|=] P-P, | /P.. Asymptotic benavior of Ap; on the boundary curve and on the

critical isotherm is determined by power laws

Ao; = BJt]® (28), Aoy = D128 |aP|1A | (29)

The use of dependences (28) and (29) for determination of the critical exponents f3
and & eliminates the distorting effect of the asymmetric part of density and
indeterminacy of the choice of value of the critical density.

However, since the choice of the form of transformation Ax — Ax* or of
extrapolation of €°f (Ax) to Ax = 0 is largely arbitrary, the reliability of these and

other methods of determining critical exponents from the results of analysis of

experimental data needs to be checked in model systems for which the exact values

of critical exponents are known.

As model system we will use Van-der-Waals' equation of state in the form [11]

K b 1 K
( t( . A9)= AQd + tAo (30)
1-b 1-b 1-b (1 - b)2

‘and the equation of state of the form [12]

(e

From equations (30) and (31), one can calculate the values of any thermodynamic
function when apporoaching the critical point from any direction, with any preset

accuracy. Therefore, equations (30) and (31) may be used to generate model sets

1 K
1-——)—-——AQ5+ tAo . (31)
1-b (1-1b)?

of experimental data of preset accuracy, which must lead to two different sets of

values of critical exponents, namely, 3 = 0.5 and 6 = 3, and § = 0.25 and § = 5.
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These values of 3 and & limit from above and below all known experimental
estimates of critical exponents of individual substances.

Figure 4 gives the Bef (t) relationships, calculated from the values of Ap; by the
tabular data [13] for water, as well as from the values of Ap; calculated by

equations of state (30) and (31), and from the equation for spontaneous
magnetiration of diamond lattice of Ising model [14]

M =B [t|®/[1+b; |t|* + b, [t]* (32)

where 8 = 0.3225, A; = 0.5, A, =1, B = 1.6, b; = 0.168, b, = 0.432.

The values of Bef for both water and model systems increase as the critical
point is approached. The estimates of the critical exponent {3 for water and model
equations of state for different methods of approximation the relationship g°f (t) in

the range (-t) = 0.01 - 0.11 are given in Table 1. In case of appropriate choice of

the form of approximation dependence, the error of determination 3 for model

equations of state is less than 0.1%. For water, the values of the critical exponent

derived by all approximation methods, lie in the narrow range of f = 0.34666 -
- 0.34722 and agree well with the estimate of § = 0.34613 [5] derived earlier as a

result of approximation of the same array of initial values of Ag; by the equation

Ao =B [t (1-0.7665]t])|? .

The similar results were obtained for other substances [7].

These regularities in the behavior of B°f suggest that the value of the critical
exponent {3 of individual substances is higher than the value § = 0.328 predicted by
the lattice gas model, because the relationship B¢f (t) is close to linear and passes
through g = 0.328 at a cosiderable distance from the critical point (for water, at
(-t) ~ 0.06). The probable value of the critical exponent for water is § = 0.346 -
0.348.

Figure 5 gives the relationships 8¢f = f(|AP|1/%), calculated by equations of
state (30) and (31), as well as the values of &°f calculated by using the values of
Ag; isolated from experimental P, o, T - data for water [15] and argon [16] on the
critical isotherm. For model equations of state, the values of Sef vary but little

with increasing distance from the critical point, while they decrease (equation
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(30)) and increase (equation (31)) with increasing |AP|. For real substances, the
values of 8 decrease with increasing |AP|, while the probable values of the
critical exponent § = 4.41 - 4.49 correspond to the space dimension d ~ 3.1 in

equation (13) and agree with independent estimates of the critical exponent § =
0.346 - 0.351.

4. THE FEATURES OF FRACTAL SPACE.

The noninteger space dimensionality is the feature of the fractal objects. There
are different definitions of fractals because of a great number of its properties [17-
- 19]. We shall consider such fractal objects that correspond to the definition: the
finite volume VFy in the space of the d dimensions, which is restricted by the
infinite surface SF,_; in the space of the (d - 1) dimensions. The dimensionality of
the surface of such fractal object has noniteger value (d - 1) < dg < d and is
determined by the equation [18]

In N (y, m)
m—yeo In ym

where N (y, m) is the minimum number of hypercubes of dimensionality (d - 1)
with side y™ necessary for covering the surface of the vintial d - dimensional
object. An example of a fractal object is providend by Koch’s line thet is
constructed as follows (Figure 6). Every side of an equilateral triangle ABC is
divided into three equal parts, and a new equilateral triangle is constructed on the
outside of every middle part of sides of triangle. By iterating this process ad
infinitum, we derive an infinite line SF; restricting a finite area VF,. On the
analogy, fractal surface SF, and fractal space SF; may be constructed on the basis
of a tetrahedron or cube and four-dimensional hypertetrahedron or hypercube.

At m-fold decreasing of triangle's side into y™ times N (y, m) = 3 - 4™ and
dimensionality of Koch's line is

dg= lim —— =lim + = = 1.26186.

In (3 - 4m) (1n3 m1n4) In 4
m—oo In 3m m—ee \m In 3 mln 3 In 3
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In the common case the dimensionality of the fractal surface SFy; is

determined by the equation

In P In [y*! + n (q-2)]
dg = = (34)
Iny Iny

where y is the coefficient of reduction of the side of the initial object; n is the
number of reduced objects extended from one face to the outside; d is the
dimension of the initial object; and q is the number of (d-1) - dimensional faces of
the d - dimensional initial object.

The area restricted by Koch's line is

_ V, 4 L\ 3 1
VF2=V2+3— 1+—+...+(————) +..=V2(1+—- )=1.6V2
9 9 9 9 1-4/9

where V, is area of initial triangle ABC.

In the common case the value of volume of fractal object VF4 with initial value

of volume Vj is determined by the equation

qn
VFd = Vd (1 + ) . (35)
¥ -p

Thus for the fractal object VFy one can introduce the absolute length

@ 1/d
L ={Vd (1 +yd )] . (36)
-p

On the other hand the infinite set of partial lengths 1, ~ y™ is needed for the
description of the fractal surface SFy ;. Any preset scale of length 1, is related
with indeterminacy in value of the fractal object volume. There is lost of
information on the area of the fractal object VF, given by Figure 6 1/5 V,, 4/45
V; and 16/405 V, when one moves from point A to point B, from point B to

4



point C and from point C to point A respectively. But this indeterminacy has the

universal value ¥y = 1/5 when it is related to the summar area of thiangles with the

length 1,,. In the common case the constant y is determined by the equation

VE, - VF4 (m) n n n
X = = : = = 37)
N(y, m) V4(y,m) v-p  yiy-1) - n(q-2) ¥4 - g

where VFy (m) is the value of volume of subfractal at m-step iteration and
V4 (v,m) is the value of elementary volyme at m-step iterasion.

The character properties of some fractal spaces SF; which are constructed on
the basis of the four-dimensional hypertetrahedron and the four-dimensional
hypercube are presented in the Table 2.

5. THE POSSBLE CONSEQUENCES OF THE DECLINATION OF
EXPERIMENTAL VALUES OF THE LIQUID-GAS SYSTEM CRITICAL
EXPONENTS FROM THE THEORETICAL ONE FOR THE THREE-DI-
MENSIONAL SYSTEM WITH ONE-COMPONENT ORDER PARAMETER.

The first experimentally based attempt to revise the classical values of the
critical exponents was done by Guggenheim in 1945, when he showed that the
critical exponent 3 = 1/3 gives more accurate description of the boundary of real
fluids than the classical critical exponent § = 1/2 [20]. But the final revision of the

classical values of critical exponents was done only in twenty years, after the
possibility of existence of nonclassical critical exponents had been theoretically
grounded by estimates for the three-dimensional Ising model and the scaling
equation of state had been developed for description of the thermodynamic surface
of individual substances by use of the nonclassical critical exponents. The
experimental “compromise” critical exponent 3 which was some more 1/3, and

the theoretical critical exponent 3, which was some less 1/3, “coexisted” some

time. It was supposed that more accurate estimates of experimental and theoretical

values of critical exponents would coincide. But by the 1980 it became finally clear
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that theoretical values are in the limits § = 0.32 - 0.33, while for description of
expcrimentél data it is preferable to use the values § = 0.34 - 0.36. Thus as the
result of progress of the modern theory of critical phenomena the problem of
determination of true values of critical exponents of liquid-gas system was
transformed into problem of approximation of experimental data so that for their
description one could use theoretical values of critical exponents.

But at more careful analysis the modern theory of critical phenomena gives, at
least, some formal foundation for existence of the “compromise” critical
exponents. Critical exponents are directly related by sensitive dependence to the
space dimension. “Compromise” exponents one can obtain, when space
dimensionality d=3.1 is substituted into the theoretical formulas. More careful
analysis of experimental data and investigation of dependences of effective
exponents on parameters of state for individual substances and model systems give
foundation to say that true values of critical exponents of liquid-gas system are in
the limits $=0.35 + 0.01 and =4.43 % 0.15 while theoretical values for three-
dimensional systems with one - component order parameter are 3=0.328 + 0.003
“and 6=4.77 + 0.05.

One of possible explanations of this discrepancy is the existence of additional
to d and N third parameter X which is the feature of the liquid-gas system. Thus
theoretical dependences for critical exponents must use (d+X) instead of d with
X = 0.1 for liquid-gas system.

Another possible explanation of declination of experimental critical exponents

from theoretical one is that value d =3.1 is the true dimensity of physical space. In

this case one can use the four-dimensional fractal object VF, as mathematical
model of space-time continuum and the fractal surface S¥; of this object is
mathematical model of physical space.

In the common theory of relativity the mathematical model of physical space is
the three-dimensional surface of some four-dimensional geometric object as well.
But in the case of fractal space SF; this surface is not “smooth” but “rough”. As
the result of such “roughness” the space is infinite and has the noninteger
dimensity 3 < dg < 4, but at any chosen scale of length 1., the space is finite and
three-dimensional. Any preset scale of length is connected with relative space -

time indeterminacy 7, which is the universal constant of space.



In the modern phylosophical literature the problems of quant properties of
space and time, characteristic scale of length, hierarchy of times are discussed.
Such properties are the features of the fractal model of space - time continuum.
That is why the hypothesis on fractal character of physical space is rightful and
needs serious mathematical, physical and phylosophical studing.

It is possible that future analysis may establish the quantitative relation of
different physical phenomena with the dimensity of the space. For the critical
phenomena such dependence has already been established: critical exponents,
which deptermine asymptotic behavior of thermodynamic functions in different
physical systems are directly related by the sensitive dependences to the space
dimension. Thus the space dimensity becomes not only the physical concept, but
the quantitative measure which one can determine through immediate

measurements of physical properties of substances.

6. CONCLUSION.

Results presented in this paper give foundation to say that critical exponents of
liquid-gas system differ from theoretical prediction for the three-dimensional
systems with one-component order parameter. But this difference may become the
initial point for the new stage of critical phenomena investigations. As there exists
the direct relation of critical exponents to the space dimensity, the final solution of
the particular problem of description of thermodynamic functions behavior in the
critical region may answer the most fundamental question - what is the World we
are living?

That is why we can forecast a new rise of critical phenomena investigations as

one of significant instruments for establishment of fundamental regularities of
nature.
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Table 1. Estimates of values of the critical exponent B for water and for

equations of state (30) and (31) using different methods of the rélationship pef

(t) approximation.

Approximation Water Equation (30) Equation (31)
-dependence
B B &3, % B 5B, %
pT=R + a;[t] 0.34722 | 0.50054 | 0.108 | 0.24319 [ -2.72
Bef =B + ap|t| + ay|t]2 0.34704 | 0.50018 | 0.036 | 0.24503 | -1.99
Bef =B + ayplt| V2 + ay|t]| 0.34666 | 0.49936 | -0.128 | 0.24987 | -0.052

Table 2. Characteristics of fractal spaces SF; made on the basis of the four -

dimensional hypertetrahedron and hypercube.

-1

y 9@ =n p dr X a Y B v n

3 5 1 30 3.095 51 | 0.1011 | 0.3457 | 1.2074 | 4.4922 | 0.6134 | 0.0315
3 8 1 33 318266 48 | 0.0945 | 03615 | 1.1825 | 4.2714 | 0.5987 { 0.0249
4 8 1 70 3.06464 186 | 0.1032 | 0.3400 | 1.2167 | 4.5784 | 0.6189 | 0.0341
4 8 2 76 312396 90 | 0.0991 | 0.3509 | 1.1992 | 4.4179 | 0.6085 | 0.0292
7 8 12 415 3.09792 165.5] 0.1009 | 0.3461 | 1.2068 | 4.4868 | 0.6130 | 0.0313




Figure Captions

Fig.1. Comparisoﬁ of the correlation radius critical exponent v calculated by
formula (4) with data [10].

Fig.2. Comparison of the correlation function critical exponent n calculated by
formula (5) with data [10].

Fig;3. The dependence of the critical exponent 8 on the critical exponent §.

Fig.4. The dependence of the effective exponent of boundary B°f on
temperature: (1) Van der Waals’ equation (30), (2) water, (3) equation (32), (4)
equation of state (31).

Fig.5. The dependence of the effective exponent of critical isotherm &°¢f on
pressure: (1) equation of state (31), (2) water, (3) argon, (4) van der Waals’
equation (30).

Fig.6. The scheme of Koch’s line constructing.
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